Schaltungssimulation im Amateurfunk mit LTSpice

"Der virtuelle Lötkolben"

Eine kleine Einführung, mit verschiedenen Beispielen

LTSpice Elektroniksimulation

- 1. Einleitung
- 2. Das Programm LTSice
- 3. Ablauf einer Simulation
- 4. Anwendungsbeispiele
- 5. Literatur / Quellen

Einleitung

Was ist Schaltungssimulation?

- Berechnung von Spannungen und Strömen
- in elektrischen Schaltungen (Netzwerken)
- zur Nachbildung der Realität

Einleitung

Was ist mit Schaltungssimulation möglich?

- Berechnung des elektrischen Verhaltens einer gegebenen Schaltung (Analyse): Spannung, Strom, Leistung, Impedanz, Dämpfung, S-Parameter,
- Optimierung von Bauelement-Werten einer gegebenen Schaltung, um gewünschtes elektrisches Verhalten zu erreichen.
- Beispiele: im Kap. 4

Einleitung

Was ist mit Schaltungssimulation nicht möglich?

- Entwurf einer Schaltung (Synthese): "Ideen finden im Kopf statt!"
- Nachbildung der Realität, wenn die Bauelement - Modelle nicht vorhanden bzw. nicht geeignet sind.
- Beispiel: "Entwurf einer Sommerzeit-Umschaltung"

Was ist LTspice?

- Abkürzung für: Linear Technologie (Hersteller)
 Simulation Program with Integrated Circuit Emphasis
- Ursprünglich entwickelt an der University of California (1972)
- Das Programm ist kostenlos verfügbar.
- Mögliche Schaltungselemente: Widerstände, Kondensatoren, Spulen, Übertrager, Spannungs-/Stromquellen, Leitungen, Schalter, Halbleiter, Röhren u.v.a.m.
- Programm zur Analyse von (nahezu) beliebigen Schaltungen.

Wie fange ich damit an?

- Programm herunterladen
 - http://www.linear.com/designtools/software/#LTspice
- Installieren
 - WIN98SE, 2000, Windows7
 - LINUX / wine siehe LTspice Hilfe für Details
- Loslegen ...

Was kann man damit machen?

 Das Gleichspannungsverhalten untersuchen sogenannte DC Analyse

Beispiel:

Wie ist der Durchlassstrom durch eine Siliziumdiode in Abhängigkeit von der anliegenden Spannung?

Bei wieviel Volt beginnt die Diode ungefähr zu leiten? Wer hat eine Idee?

Was kann man damit machen?

 Das Zeitverhalten untersuchen sogenannte Transient Analyse

Beispiel:

Wie lange dauert es, bis sich ein 10nF Kondensator an einem Vorwiderstand von 18k Ohm auf die Eingangsspannung von 1 V aufgeladen hat?

Bitte jetzt schätzen!

Was kann man damit machen?

 Das Wechselspannungsverhalten untersuchen (Analyse der Ausganggröße als Funktion der Frequenz)

Beispiel:

Wie muss das Potentiometer für die Einstellung eines analogen, mit OPV's aufgebauten CW-Filters, dimensioniert werden?

Bedienung u. Funktionen (im Internet gibt es viele Anleitungen)

- Die Bedienung ist nicht gerade kinderleicht. Es handelt sich um eine bunte Mischung von Menüs, Funktionstasten und Kommandozeilen-Eingaben.
- Wenn man den Dreh raus hat, läuft es priema.
- Neue Ideen können "ohne Lötkolben" bis ins Detail ausgetestet werden.
- Auch für uns Funkamateure eröffnen sich viele kreative Möglichkeiten.
- Man kann nicht nur komplexe Schaltungen, sondern auch einfache Grundschaltungen untersuchen. Es eignet sich hervorragend zur Ausbildung, um Zusammenhänge besser verstehen zu können.

Übersicht

- 1. Schaltung und Analyseart müssen bekannt sein
- 2. Bauteil-Modelle müssen vorhanden sein
- 3. Schaltung in das Programm eingeben
- 4. Analyse-Parameter festlegen
- 5. Analyse durchführen
- 6. Ergebnisse darstellen und überprüfen

1. Schaltung und Analyseart sind bekannt

- Schaltung: RC-Tiefpass
- Gesucht: (Frequenzgang)
 Übertragungsfunktion
 [U2/U1]=(f)f
- => lineare AC-Analyse " Frequenzgang "

2. Bauteil-Modelle beschaffen

(in diesem Beispiel nicht erforderlich, Modelle sind Bestanteil der Datenbank des Programms)

- SPICE-Modell-Bibliotheken (Pspise, spice, LTspice)
- Bauteilhersteller (Internet)
- Literatur
- Datenblattangaben
- Messungen

3. Schaltung eingeben

C:\Users\ASUS\Documents\LTSpice\F73_OVabend\LC1.asc

4. Analyseparameter festlegen

C:\Users\ASUS\Documents\LTSpice\F73_OVabend\LC2.asc

5. Analyse durchführen

C:\Users\ASUS\Documents\LTSpice\F73_OVabend\LC_parameter.asc

3. Schaltung eingeben

C:\Users\ASUS\Documents\LTSpice\F73_OVabend\LC1.asc

4. Analyseparameter festlegen

C:\Users\ASUS\Documents\LTSpice\F73_OVabend\LC2.asc

5. Analyse durchführen

C:\Users\ASUS\Documents\LTSpice\F73_OVabend\LC_parameter.asc

Nr.	Schaltung	Analyseart	Besonderheiten
1	Spannungsstabilisierung mit Zenerdiode	DC	
2	Spannungsstabilisierung mit Zenerdiode	DC	Parameter Step, unterschiedliche Lasten
3	HF Bandpassfilter	AC	S-Parameter; Transmission und Reflektion
4	Quarzersatzschaltung	AC	Quarzmodellierung
5	ZF-Quarzfilter	AC	Impedanzberechnung; S- Parameter
6	Oszillator in Clapp- Schaltung	TRAN	Start einer Schwingung; FFT- Oberwellen - Spektrum
7	CW – Tastung einer Verstärkerstufe	TRAN	Signalverlauf ohne "Klicks"; Oberwellen-Spektrum

Spannungs-Stabilisierung mit Zener-Diode

- Zener-Diode ist in der Datenbank von LTspice
- Gesucht: AusgangsspannungVaus in Abhängigkeit von der Eingangsspannung Vein

 $C:\label{eq:linear} C:\label{eq:linear} C:\label{eq:linear} OVabend\Documents\LTSpice\F73_OVabend\ZD1_4_7V.asc$

Spannungs-Stabilisierung mit Zener-Diode

• für V1 oberhalb \approx 7 V ist V(OUT) konstant bei \approx 4,7 V

Spannungs-Stabilisierung mit Zener-Diode

- Beispiel f
 ür nicht lineare DC-Analyse mit PARAMETER
- Zener-Diode ist in der Datenbank von LTspice
- Gesucht: AusgangsspannungVaus in Abhängigkeit von der Eingangsspannung Vein und vom Lastwiderstand RL

Spannungs-Stabilisierung mit Zener-Diode

- Beispiel f
 ür nicht lineare DC-Analyse mit PARAMETER
- Zener-Diode ist in der Datenbank von LTspice
- Gesucht: AusgangsspannungVaus in Abhängigkeit von der Eingangsspannung Vein und vom Lastwiderstand RL

Spannungs-Stabilisierung mit Zener-Diode

- Knick-Spannung, ab der V(OUT) konstant ist, steigt mit kleinerem RL
- für V1 oberhalb \approx 14 V ist V(OUT) für alle betrachteten Lastfälle konstant bei \approx 4,7 V

Bandpass für 80m

[DC4KU Werner Schnorrenberger - Großsignalfestes und empfindliches HF-Eingangsteil]

- Beispiel für nicht lineare DC-Analyse
- Gesucht: Transmission und Reflektion (S-Parameter |S21| u. |S11|)

Anwendungsbeispiel 3 - Ergebnis

Anwendungsbeispiel 3 - Skalierung geändert

Anwendungsbeispiel 3 - Skalierung noch mal geändert

Anwendungsbeispiel 4 - Schwingquarz

<u>Anwendungsbeispiel 4 - Schwingquarz</u>

Ersatzschaltung laut WIKIPEDIA

Quarz Ersatzschaltung

- Parameter eines ELECRAFT K2 Quarz (gemessen) :
 - fres = 4,9136 MHZ
 - Ls = 71 mH
 - Cp = 3,6 pF
 - Q > 100.000
- daraus berechnet

Cs = 14,77687fF

Rs = 11,4 Ohm (für Q = 184.871)

C:\Users\ASUS\Documents\LTSpice\F73_OVabend\Quarz.asc

Quarz-Filter B3dB 300Hz (CW) K2

• Mit ELECRAFT K2 Quarzen (aus Beispiel 4) :

C:\Users\ASUS\Documents\LTSpice\F73_OVabend\Quarzfilter_K2.asc

<u>Anwendungsbeispiel 6</u> Oszillator in Clapp-Schaltung

- Beispiel für nicht-lineare transiente Analyse (Zeitbereich)
- Gesucht: Ausgangsspannung V AUS
- Mit Bauteilen aus der LTspice Datenbank

C:\Users\ASUS\Documents\LTSpice\F73_OVabend\CLAPP_oszilator.asc

Anwendungsbeispiel 6 Clapp-Oszilator Anschwingverhalten

Anwendungsbeispiel 6 Clapp-Oszilator Oberwellen-Spektrum

<u>Anwendungsbeispiel 7</u> QRP PA für CW (ohne "Klicks")

- Wie sind die Flanken der CW Impulse?
- Wie ist das Ausgangsspektrum ohne und mit Tiefpassfilter?

C:\Users\ASUS\Documents\LTSpice\F73_OVabend\IRF510_PA_Tastung.asc

Anwendungsbeispiel 7 – CW ohne Klicks

<u>Anwendungsbeispiel 7</u> Ausgangsspektrum ohne Tiefpass - Filter

Anwendungsbeispiel 7 - Ausgangsspektrum nach TP

Vielen Dank für die Aufmerksamkeit!

Viel Spass beim ausprobieren!

Eventuelle Fragen an: DK3WM@DARC.de

Links, DOKU, Beispiele, Infos u.a.m.

=> siehe www.ov-f73.de

LINK's und Co.

- URLvon LTSpice: http://www.linear.com/designtools/software/
- Hier gibt's ein Tutorial in deutsch (sehr informativ).
 www.elektronikschule.de/~krausg
- Kurzanleitung http://www.zhaw.ch/~hhrt/LTspice/LTSpice%20Tutorial%201%20V03.pdf
- Die Benutzung diverser Suchmaschinen beschert Lesestoff ohne Ende . . .